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Abstract. The finite-size scaling spectra of k i n g  model corner transfer matrices and  their 
generators are  studied at  criticality. The generators are  diagonalised using fermion algebra. 
The low-lying eigenvalues, given by the zeros of Meixner polynomials, are equally spaced 
and  collapse like l / l og  N for large N as  predicted by conformal invariance. The 
asymptotics a re  obtained using a generalised Euler-Maclaurin summation formula.  The 
shift in the largest eigenvalue is given analytically as  m / 6  log N with central charge c = 4. 
The spectrum generating functions, for both fixed a n d  free boundary conditions, are  
expressed simply in terms of the c =4 Virasoro characters ~ ~ ( 9 1  with modular  parameter 
9 = exp(  - x / l o g  N )  and  conformal dimensions A = 0, 4, &. 

1. Introduction 

Recently much progress has been made in the theory of critical phenomena by 
generalising the notion of scale invariance of critical systems to include invariance 
under conformal and modular transformations (Belavin et a1 1984, Cardy 1986a, 1987, 
1988). In particular, the universality classes of critical two-dimensional lattice models 
and conformal field theories can be classified according to the value of the central 
charge c of the corresponding conformal Virasoro algebra. For c < I ,  a complete 
classification has been obtained (Friedan et a1 1984) yielding the unitary series with 
c = 1 - 6/ m ( m  + 1) and m = 3,4,5,  . . . . In this case the critical exponents are quantised 
and only a finite number of scaling operators enter the theory. These theories are 
realised within statistical mechanics by the A - D E  lattice models (Andrews et a1 1984, 
Huse 1984, Pasquier l986,1987a, b). The additional assumption of modular invariance 
on a torus allows the complete operator content of these theories to be elucidated 
(Cardy 1986a). More precisely, the finite-size scaling partition function at criticality 
is given as a modular invariant combination of the characters of the associated Virasoro 
algebra (Itzykson and Zuber 1986, Capelli et a1 1987a, b). 

The study of conformal invariance in other geometries and the effect of boundary 
conditions has been initiated by Cardy (1986b). I t  now appears that the operator 
content of the theory on an annulus plays a privileged role (Cardy 1990) and that this 
is intimately connected with the very special properties of corner transfer matrices 
(CTMS) introduced by Baxter (1976, 1982). Perhaps the most striking .evidence for this 
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is the mysterious occurrence of Virasoro characters in the spectra of CTMS of lattice 
models off criticality (Date et a /  1987, 1989, Kuniba and  Yajima 1987, Saleur and  
Bauer 1989). This naturally leads to the possibility of extending the mathematical 
machinery of Virasoro algebras to integrable non-critical models (Thacker 1986, 
Itoyama and Thacker 1986, 1988, 1989). Apparently, in this special case, the Virasoro 
symmetry is connected with integrability and the Yang-Baxter equation and is not a 
consequence of conformal invariance. 

Following Peschel and  Truong (Peschel and Truong 1987, Truong and  Peschel 
1988a, b, Peschel 1988), we pursue here the study of the spectra of lattice model CTMS 

at criticality. In this case the occurrence of the Virasoro algebra is expected as a 
consequence of the conformal invariance of the critical system. Indeed, on the basis 
of conformal invariance, Peschel and Truong have established two important facts. 
First, for a corner of large but finite size N and opening angle 0, the low-lying 
eigenvalues are equally spaced with level splitting given by 

E = 1r0/log N. (1.1) 
Second, the universal finite-size correction to the largest eigenvalue or  groundstate is 
given by 

m / 2 4  log N (1.2) 
where c is the central charge. 

In this paper, we extend the Ising model results of Peschel and  Truong in two 
directions. First, we are able to calculate the universal finite-size corrections for the 
CTM generators analytically. This is achieved using fermion techniques developed in 
Davies (1988, 1989) and  a generalised Euler-Maclaurin summation formula (Lyness 
and  Ninham 1966). We find the well known k ing  result 

c = i  1. (1.3) 
Second, we explore the dependence of the critical CTM spectra on boundary conditions. 
Specifically, we obtain the low-lying eigenvalues for both fixed and free boundary 
conditions. The generating functions of these eigenvalues are expressed simply in 
terms of the c = Virasoro characters xA( q )  with modular parameter q = exp( -rr/log N)  
and  conformal dimensions A = 0, f ,  &. We treat only the Ising model here for the 
technical convenience that there is a fermion representation. Nevertheless, the clear 
general picture that emerges should apply to lattice models in general and to the A - D - E  
models in particular. 

2. Corner transfer matrices and their generators 

The basic CTM for a lattice divided at a given centre spin s, and with N = 4  spins 
along an  edge is shown in figures 1 and 2. The difference between the two is in the 
choice of boundary conditions: in figure 1 all boundary spins are free, in figure 2 they 
are all fixed. In this paper we are interested in the critical k i n g  model for which (the 
5, are normalised by k T )  

(2.1) sinh 2J ,  sinh 25, = 1. 
A standard parametrisation of the interaction coefficients in this case is 

sinh 2 j ,  = sinh 2J, = tan 2u 

cosh 2 j ,  = cosh 2J, = sec 2u. 
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Figure 1. Corner transfer matrix for free boundary 
are summed out. 

conditions. Circles are spins, full  circles 

Figure 2. Corner transfer matrix for fixed boundary conditions. Circles and squares are 
spins, full circles are summed out and squares are fixed boundary spins. 

Here we have introduced dual variables in the usual manner: 

tanh j ,  = exp(-2J,). (2.3) 

In ( 2 . 2 ) ,  U is the spectral parameter. It is also a measure of the anisotropy of the 
system: in the extreme anisotropic limit A ( u )  approaches a multiple of the identity 
matrix. Rotation of the lattice through 90°, which interchanges J ,  with J z ,  is achieved 
by U + A - U, where A = r/4 is the crossing parameter; the physical region is 0 < U < A. 

In the general case, there will be N spins along an  edge: for fixed boundary 
conditions we envisage a line of fixed spins on the ( N  + 1)th line. The interaction 
between two neighbouring spins defines an  operator represented by a 2 x 2 matrix, the 
entries of which are the Boltzmann weights exp(*J,). To write these explicitly in terms 
of Pauli matrices a; ( a  = x, y ,  z )  we choose the non-standard representation 

0 -i - 0 -1 
(2.4) 0 -1 
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(This differs from the standard representation only via a 90” rotation about the y axis.) 
The operator for an  interaction of strength J ,  between two spins on the j t h  line is 

X 2 , - ,  = ( 2  sinh 2Ji)’”exp(-.f1aJ) 

sin U 

sin(/\ - U )  
U ,  - I (2 .5)  

U,,-, = 2 - ” 7 z  - a;,. 
Here p ,  is an  unimportant normalisation factor. Similarly, the operator for an interac- 
tion of strength J 2  between two spins on the j t h  and  ( j+ 1)th lines is 

X2,  = exp(J2a:ay+,) 

sin U 

sin(A - U )  
I +  

uz, = 2 - I  ’>( I + a; a;-, 1 * 
Finally, the operator for an  interaction of strength J2 between a spin on the N t h  line 
and  a fixed spin on the ( N  + 1)th boundary line is 

XzlL = e x p ( J 2 a k )  

sin U 
(2 .7)  

u2\ = 2-I’”z + U ; ) .  

Here the convention is that the boundary spin is fixed so that it is an eigenstate of 
uhtl with eigenvalue $ 1 .  

Clearly the CTM is the product of such operators, one for each interaction, in the 
appropriate order. For free boundaries, the product is 

A(  U = Xz \ - 1 Xz - 2 (  XZ \ - 1 X2 \ - 3 )  ( X z  \ -2X2 - 4 )  ( X z  \ - I  X2 \ -3X2 \ c )  

, . . x2. . . (X2  \ -4x2 \ -3x2 ‘v- 1 ) (X2  \ 4x2 N - 2 ) (X?  ’v -3x2 \ 11x2 4 -2X2h - 1 .  

(2 .8)  
The operator at the centre of this product is X 2  and the factors xh in the product are 
symmetrically disposed about this centre factor. This is important: it means that the 
inverse of A ( # )  is the same product with each factor xh replaced by its inverse X i 1 .  
For fixed boundaries, A ( u )  is obtained by the trivial modification 

A (  U 1 = x2 \‘x2 b - 1 ( X 2  Y X 2  4 - 2 ) (  x2 h i X 2 N  - 1)(X2 cx2  Y -2xz b -4)  

. . . x2 . . . ( x2 \ +x2 \ -2X? ,  ) (XZ \ -1x* \ - i)(X, \ -2X,  ) X ,  \ -1x2 4 .  

(2 .9)  
For a non-critical system, and in the thermodynamic limit ( N  + m),  Baxter (1982) 

has shown that there is an  operator H called the generator such that A,,( U )  = exp( -uH) .  
At criticality the situation is more delicate because the spectrum collapses. However 
we shall see that there is a generator H which contains much useful information in 
this case also. Expanding A ( u )  about U = 0 the first non-trivial term is the linear one. 
To this order non-commutation of the operators is no problem and a simple computation 
gives H. Using the definitions 

A ,  ( U )  = n ( I + U U, ) 1 I - U H  (2.10) 
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(2.11) 
, = I  

and for fixed boundaries 
2 2 ,  

H,= - A  C ( J - l ) U , .  (2.12) 
/ = 1  

The general structure for the CTM and its generator H is generic for many solvable 
models, with the operators U, forming a Temperley-Lieb algebra (Temperley and Lieb 
1971, Baxter 1982), explicitly: 

uf = Q‘/?U, 

(2.13) 

For Potts models the parameter Q is identified with the number of states; for the Ising 
model Q = 2. An important property which we need, which follows immediately from 
our definitions and  the Temperley-Lieb algebra, is the inversion identity (Davies 1988) 

A ( u ) A ( - u ) = ( 2  cot 2 ~ ) ” l I  (2.14) 

where NI is the number of interactions of type J ,  . To prove this result, we note that 
there is a similar identity for each of the operators X,, namely 

x~,-,(u)x~,-I(-u) = (2  cot 2 u ) I  X z , ( U ) X 2 , ( - U )  = I (2.15) 

from which (2.14) follows immediately. For the k ing  model it is natural to use fermion 
operators and  Clifford algebras to represent solutions of the Ising model in an  elegant 
and  simple form. This is the subject of the next two sections. 

3. Diagonalisation of generators 

It is convenient to introduce fermion operators first, via the Jordan-Wigner transfor- 
mation: 

where the P, are defined by 
J 

k = l  
P, = n (-ai).  (3.2) 

The operators f ,7 ,  f ;  satisfy the usual anticommutation relations for fermions. More 
important for our immediate purpose are the operators 

together with the operator rrYTl  = PN which may be written as the product 

rZhTl =i”r,r,. . . rrl.-lr.l.. (3.4) 
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These operators satisfy the commutation relations for generators of a Clifford algebra: 

r,r, +r,r, = 2 4 k .  (3.5) 

It is important for our analysis to notice that there are two natural ways in which these 
operators may be related to fermions. One is the way in which they were constructed, 
and then r 2 N + l  is the parity operator which commutes with everything for the case of 
free boundary conditions. However, for fixed boundary conditions the CTM does not 
commute with T z k + l ,  so this choice is inappropriate. Since it does commute with r ,  , 
it is natural to use the operators T z ,  r7,  . . . , Tz v, r2h.+l ,  to generate the Clifford algebra 
in this case, with sums and differences of the pairs (r2, r3), . . . , (r,,, r,,,,) as fermion 
creation and annihilation operators. Now the further relation r l  = i ”  TJ3 . . . r2Nr2?,  
means that the centre spin is determined by the parity operator r ,  . This relabelling 
of the Clifford generators is the ‘order-disorder’ transformation used in Davies (1988). 
It enables us to treat both sets of boundary conditions in a parallel way. 

The operators XZ,-,, X , ,  have a simple interpretation as spinor rotations, namely 

This also expresses the operators H as sums of such quadratic factors rjr,,+l. We 
want to bring H to diagonal form in fermions by a Bogoliubov-Valatin (Bogoliubov 
1959, Valatin 1961) transformation, i.e. we seek a canonical transformation to new 
fermion operators G;, GI , according to which the new operators are linear combination 
of the old, so that H takes the form of a sum of commuting operators. Most of the 
technical details may be found in Davies (1988): here we only give what is needed for 
our immediate purpose. The appropriate diagonal form is 

H = 4&,G;G,. 
, = I  

(3.7) 

We must explain the factor 4. The partition function of a complete lattice is obtained 
from the product of four corners: A( u ) A (  77/4 - u ) A (  u ) A (  77/4 - U )  = exp( 77H/2) .  We 
want to relate the low-lying eigenvalues through the correspondence A,( U )  = exp( -e&,), 
where 8 is the opening angle, and 6, = 277 corresponds to U = 7712. Thus, with this 
factor inserted, all conformal results will be normalised by the number of radians in 
a complete planar lattice. 

Denote the new Clifford generators corresponding to the new fermion operators by 

~ ; , - , = ( G ; + G , )  ri, = -i( G; - G I ) .  (3.8) 

The transformation will be canonical, i.e. the new generators will satisfy (3.5), if they 
are related to the original generators by a real orthogonal linear transformation: 

r: = C p$-, (1 s 2s 2 N ) .  (3.9) 

We have omitted the summation limits in this equation: in the case of free boundary 
conditions we have 1 S j s 2N, for fixed boundary conditions we have 2 s j s 2N + 1. 
Determination of Pu and E, is now an eigenvalue problem for a matrix of dimension 
2N, found by requiring the commutation relation (Davies 1988, equation (3.6)) 

[ H, GJA] = 4&,GJ. (3.10) 
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It is illuminating to express If,, H ,  in fermion operators. We find 

(3.11) 
J = 1  j =  I 

which is the critical limit of the high-temperature case (Davies 1988, equation (3.4)) and 

(3.12) 
j = 1  j = l  

which is the critical limit of the low-temperature case (Davies 1988, equation (5.6)). 
The difference is brought about by the different choice of generators for the algebra. 
In either case a linear transformation (Davies 1988, equation (3.7)) leads to an 
eigenvalue problem for a real symmetric tridiagonal matrix Xo ( X * )  of dimension 2 N 
(Davies 1988, equations (3.8),  ( 5 . 8 ) )  and we obtain a real orthogonal transformation P 
for use in (3.9). The matrices KO, X + ,  for the two cases are bipartite and have the 
following structure: 

For example, in the case N = 2: 

The only difference is that Xo has a border of zeros added to X+ as its first row and 
column, Yith tht,last row and column of X& omitted. The border of zeros gives a zero 
eigenvaluk with etgenvector (1 ,0 ,0 ,0, .  . . ): this informs us that a; commutes with Ho.  
The rest of the spectrum, in both cases, is found by diagonalising the same matrix: 
for free boundary conditions it has 2 N  - 1 rows and columns and for fixed boundary 
conditions 2 N. Because the matrices are symmetric and bipartite, the eigenvalues 
occur in real pairs of opposite sign. 

4. Diagonalisation of corner transfer matrices 

We also need to know the structure of the diagonal form of the CTMS in fermion 
operators. We seek a canonical transformation under which the CTMS take the form 
of a product of commuting operators: 

N 

A( U )  = A,,, n [ 1 + ( A, - 1 ) G; G,] 
] = I  

We make the following observations before proceeding further. 
(i)  The CTMS commute with rl  = so they are diagonal in the first spin variable, 

falling into two blocks labelled by the centre spin. 
(ii) In the case of free boundary conditions, the CTM also commutes with I'ZN+l, 

the operator which detects the parity of the states. The spectrum is doubly degenerate 
in this case. 
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(iii) In the case of fixed boundary conditions, the CTM does not commute with 
rZN+,  and we again use the 'order-disorder' transformation in which r l  is the parity 
operator. 

The eigenvalue problem has two steps to its solution: first we find the operators 
G J ,  G, and their associated eigenvalues A,, then we evaluate the maximal eigenvalue 
Amax.  Determination of P,, for use in (3.9) is again an  eigenvalue problem for a matrix 
of dimension 2N, this time found by requiring 

A( u ) ~ ; ~ - ' ( ~ )  = A,G; (4.2) 

which is a consequence of (4.1). A ( u )  is the product of operators X ,  whose effect on 
each generator I-, as a similarity transformation is to induce a linear transformation 
(automorphism of the algebra). The operators X k  are given in (3.6) as spinor rotation 
operators: exp(ixF,r,+l) .  The basic relations from which everything follows are (Davies 
and  Abraham 1987) 

cosh 2x -i sinh 2x1 [ 
e x p ( i x r , r h ) [  exp(- ixr , r , )  = i sinh 2x cosh 2x (4.3) 

e x p ( i x r , r k ) r ,  exp( - ixr , r , )  = r, ( 1  # j ,  k ) .  
Consequently there is a complex 2 N x 2 N  matrix Z k ( u )  which represents the effect 
of X k  as a similarity transformation. Its definition is 

(4.4) 

and  from (3.6) and (4.3), we see it differs from the 2 N  x 2 N  identity matrix only in 
one 2 x 2 block, between an adjacent pair of indices, where it has the entries 

1 sec 2u -i tan 2 u  
i t a n 2 u  sec2u  

%k( U )  = (4.5) 

This matrix is both complex Hermitian and orthogonal. Moreover its inverse is 2,( --U), 
which is the analogue of the inversion relation (2.15) for X , ( u ) .  

It follows that there is a complex 2 N  x 2 N  matrix &(U) which represents the 
similarity transformations needed for the left-hand side of (4.2): namely 

where &(U) is the product of the appropriate matrices z h ( u ) .  For free boundaries, 
(2.8) gives 

d ( U ) = 2 2  , - I 2: v -2 ( z2 'r - I 2 2  'I 3 )  ( T2 'r - 2 2 z 2  , -4) ( 2 2  \ - I z2 'I - 3 2: & - 5 )  

.2? . . . ( 2 2  , - z 2 2  \ - 3 2?2 'I - 1 ) ( 2?2 \ - 4 F 2  'v -2 ) ( z> 4 - 3 2 r 2  , - 1 1 2 2  'r - 2 2 2  'I - 1 

(4.7) 
and  there is a similar formula for fixed boundary conditions. I n  general we cannot 
give a closed formula for d( U )  beyond this. However we can make a number of 
general observations which are of importance. 

( i )  &(U) is the product of Hermitian and complex orthogonal matrices and is 
invariant under reversal of the order of the factors Z k ( u ) .  Consequently &(U) is 
Hermitian and complex orthogonal; in particular the transpose and the complex 
conjugate of &(U) are both equal to its inverse. 
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(ii) The relation between &( U )  and X is the same as between the normalised A( U )  
and H :  in the thermodynamic limit, &( U )  = exp( -U%) with X = d ' ( 0 ) .  Moreover, the 
inversion identity for A (  U )  becomes .P( U ) - '  = .P( - - U ) ,  without a normalisation factor. 

( i i i )  The eigenvalues of & ( U )  are real and  their product is unity for all complex 
U .  For U = 0 all eigenvalues are unity: since & ( U )  is meromorphic in U ,  none of its 
eigenvalues may change sign, so they are positive for all complex U (away from poles 
of & ( U ) ) .  

(iv) The inverse of &(U) is its complex conjugate g ( u ) .  Therefore, if U is an  
eigenvector of &( U )  with eigenvalue A, it is an  eigenvector of 8( U )  = &( U)-' with the 
eigenvalue A and  the complex conjugate of U is a different eigenvector of 8( U )  with 
eigenvalue A.  The last property follows from the fact that the eigenvectors are complex 
because & ( U )  is complex while A is real. Thus the eigenvalues of & ( U )  must occur 
in real reciprocal pairs A, A - I  for which the corresponding eigenvectors are complex 
conjugate pairs. This corresponds to the pairing of eigenvalues of X. 

(v)  Construct a unitary matrix Q which diagonalises & ( U ) ,  arranged so that 
successive pairs of columns are eigenvectors belonging to eigenvalues A,, A,-', respec- 
tively, and with the A, ( s 1 )  arranged in decreasing order of magnitude. Then the 
column of operators given by ZQ,,r, are just the required fermion operators 
G:, G I ,  G:, G z ,  . . . , G L ,  G, and the generators r:  constructed by using them in (3.8) 
define a real orthogonal transformation (3.9) because of the complex conjugate pairing 
of eigenvectors. 

To complete the diagonalisation of A(  U )  we must evaluate the maximal eigenvalue 
A,,,. This is done using the inversion identity (2.14), together with the operator 
(Davies 1988, equation (5.10)) 

(4.8) 

R is an  involution and  it is also a unitary operator which commutes with 
r l ,  r3 , .  . . r 2 N - ,  , rZMfl  and anticommutes with r2r4..  . TzN-JZh.. Its action of invert- 
ing the operators X k (  U )  may be seen from (3.6), from which the action on A ( u )  follows: 

A ( - u ) =  R A ( u ) R - .  (4.9) 

Its action on the fermion operators G,,  G, is to interchange them with some change 
of phase: here we need only the simple result 

RG;G,R? = G,G;. (4.10) 

Substituting (4.9), (4.1) and  (4.10) into (4.6) (in that order) and  using the canonical 
commutation relations for fermion operators (GJG, + G,G, = 1) gives 

(4.1 1) 

from which A,,, may be determined once & ( U )  has been diagonalised. 
The methods given for diagonalisation d o  not lead to closed form expressions for 

the spectrum of either H or A ( u ) .  We know that the spectrum of A ( u )  has a direct 
product form, with the structure given by the excitations and the overall scale set by 
Amax( U ,  N ) .  For the purpose of this paper, in which interest is focused on the conformal 
properties of A ( u ) ,  we want to find the structure of the lower lying states, and the 
universal finite-size corrections to A , , , , ( u ,  N ) .  In general, all we know is that calculation 
of some property based on H will give the first term in a Taylor expansion, around 
U = 0, of the same property based on A( U ) .  Away from criticality, this information 
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would be sufficient because of the exponential relation between A( U )  and H. For the 
low lying states, this exponential property survives even at criticality. That is, for fixed 
U and n, we have the limiting behaviour 

(4.12) 

This assertion depends on properties which cannot be proved analytically, so we report 
in an  appendix numerical calculations which provide strong supporting evidence. The 
results of this paper, however, are based on analytic calculation alone. This is important 
as it should allow extension of the present methods from the Ising model to other 
solvable models for which there is no elegant algebraic formulation, but for which 
there are appropriate generators H with a quasiparticle spectrum. 

5. Asymptotic analysis of generators 

Truong and  Peschel(l988) and Davies (1988) have shown that the low-lying eigenvalues 
of Ising and  six-vertex CTMS are found from the zeros of Meixner polynomials (Chihara 
19783, and  that these zeros collapse like l / log  N for large N. It is easy to show that 
the characteristic polynomials of RO, R*, of (3.13) are indeed Meixner polynomials. 
Let 

= i&,,+, +j6+,, ,  (5.1) 

be a square matrix of dimension n, which is the common part of X,, and X* with the 
factor f omitted for convenience. Then we may write a recursion relation for its 
characteristic polynomial P,, ( A  ) using Gaussian elimination on the tridiagonal matrix 
( A Z  - A) which completely determines Pn ( A  ) by 

go(A) = 1 

Pp,(A) = A  ( 5 . 2 )  

P,,+,(A) =A9, (A) -n '9 'P , - , (A )  

These are the recursion relations for Meixner polynomials of the second kind (Chihara 
1978). The eigenvalues of Xu are A / 2 ,  where A are the zeros of 9 ' 2 h - , ( A )  while the 
eigenvalues of X= are similarly related to the zeros of P2&(A), The spectrum of 
excitations for the two different boundary conditions therefore interleave; also X o  has 
a total of two zero eigenvalues and 2- has none, since Meixner polynomials of odd  
(even) order are odd (even) functions. (Recall that X0 has a border of zeros which 
contribute one zero eigenvalue.) Both these properties are the same as in the non-critical 
case (Davies 1988). 

Meixner polynomials have the integral reprt entation (Truong and  Peschel 1988a) 

n!i-" cosh xA/2 tanh"x exp(iAx) 
P,(A) = d x. 

IT c o s h x  (5.3) 

The asymptotic form for large n is found using the method of steepest descents. Define 
the phase function d ( x ,  A )  by 

(5.4) d(x, A )  = iAx + n log sinh x - ( n  + 1) log cosh x. 



Ising model corner transfer matrices 1305 

The points of stationary phase in the complex x plane are determined by 

O =  d~’(x, A )  = i A  + n coth x - ( n +  1) tanh x (5.5) 

which determines two stationary points xI via 

iA+[4n(n+l ) -A2]”’  
2 ( n + l )  

tanh x, = 

The lowest-order steepest descent approximation is 

(5.7) 

where 

$(x, A )  = 4 ( ~ ,  A )  -$10g[-24”(x, A ) ] .  ( 5 . 8 )  

In order to get a zero, which is our primary interest, the two terms in (5.7) must cancel. 
Remember also that A is real. So we need that Re[+(x-, A ) ]  = Re[+(x+, A)] and 
Im[$(x-, A)] - Im[+(x+, A)] = r (mod 27r). Let us consider first real A in the interval 
(0, [4n(n + 1)]”2). Then it may be shown that the function Im[+(x+, A ) ]  increases 
monotonically from the limit Im[ +(x+,  O +  )I = 0 to Im[+(x+, [4n( n + 1)]”2 - O)] = 

( n  +$)../a. Similarly the function Im[+(x-, A ) ]  decreases monotonically from the 
limit Im[+(x-,O+)]= nlr to Im[+(x-, [ 4 n ( n + l ) ] ” * - O ) ] = ( n - ~ ) r / 2 .  Thestationary 
points are symmetrically placed about the imaginary axis, with Im[x,] > 0 and it follows 
that Re[$(x-, A ) ]  = Re[+( Y + ,  A)] for all A in this interval. Consequently the condition 
for a zero is satisfied the correct number of times: that is, [n/2] (integer part of n/2). 
Also there is a zero at A = O  for odd n because the limit Im[+(x+,O+)]-  
Im[+(x-, 0 - ) ]  = r (mod 2 7 )  when n is odd. For A = [4n(n + l)]i’2, the stationary 
points coalesce on the imaginary axis and change their nature. For A > [4n(n + 1)]”* 
there are no more zeros. Steepest descents generates an asymptotic expansion, and in 
principle we may take this to whatever order is needed. At any order, however, we 
recover the same structure with some phase function $(x, A ) .  

We introduce some new variables before giving the formulae for the zeros, writing 

a = A/[.ln(n + l)]”’ f( .)=2lm[+(x+,A)l/ lrn.  (5.9) 

The positive zeros lie in the range O <  a < 1 and are given by the implicit equation 

f ( a , )  = ( 2 j -  l ) / n  

f(a,) = 2j/n 

( j  = 1, .  . . , n/2, even n)  

( j =  1 , .  . . , [n/2],odd n). 
(5.10) 

The asymptotic values for the low-lying part of the spectrum is contained in the 
behaviour of f( a )  in some neighbourhood of a = 0, which remains unchanged as 
n + cc. From the definitions o f f (  a )  and Im[ $(x+,  A I]  we find that for small a 

f ( a )  = - (2a/r)  log(a/2)  (5.11) 

from which it follows that, for fixed A and large n, the Meixner polynomials have the 
asymptotic form 

P,,(A) -sin[(A/2) log n ]  (even n )  

=cos[(A/2) log n ]  (odd n). (5.12) 
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The excitation energies of low-lying states (recall that energies are normalised per 
radian and also that E )  = A,/2) are given asymptotically by 

E, = 7rj/log N (5.13) 

for %,, and 
E /  = . i r( j-f , / log N (5.14) 

for 2*. Thus the low-lying part of the spectrum collapses for large N. In using these 
results it is important to notice that the higher part of the spectrum certainly does not 
collapse. This is seen by writing 

9 ' P , ( A ) = x n + a 2 x " - 2 + . . .  . (5.15) 

The coefficient u2 is the sum of the squares of the eigenvalues, and the recursion 
relation for 9 ' , , (A)  gives 

(5.16) 

which prevents the collapse of all but the bottom of the spectrum. 

write (4.11) as 
Now we need to calculate the maximal eigenvalue A,,,, at least for small U. We 

iv 
l o g A , , , = ~ N ,  l o g 2 c o t 2 u + 2 u  E / .  

/ = I  
(5.17) 

We must obtain an asymptotic expansion for the sum for large N. Consider first the 
case of free boundaries. The Meixner polynomial is of degree 2 N  - 1, and there are 
N - 1 excitations E, determined by the implicit equation ( 5 . 1 0 ~ ) .  Thus 

N - 1 Y - 1  

] = I  , = I  
E, = [ 4 N (  N+ l)] '  ' f - ' ( j / N ) ,  (5.18) 

Here f-' stands for the inverse function; its values at an  equally spaced set of points 
determines the eigenvalues. The leading approximation to (5.18) is evidently an  integral 
of f - ' ( x )  over the range [0,1]. The asymptotic expansion is the error expansion of a 
quadrature rule for such a n  integral, and  the logarithmic singularity of the integrand 
is responsible for the corrections we seek. Therefore we write (5.18) as 

(5.19) 
J = 1  

where the notation indicates the endpoint trapezoidal quadrature rule for the integral 
over the interval [0, 13. Asymptotic expansions for the error of general quadrature 
rules, when the integrand has end point singularities, were developed by Lyness and  
Ninham (1966). They give fomulae for an  endpoint singularity of the type x P h ( x ) ,  
where h ( x )  is analytic, from which the formulae for functions with a logarithmic 
singularity may be obtained by differentiation or  integration with respect to p. For 
the endpoint rule, the formula is 

(5.20) 

Near (Y = 0, the inverse function . f - ' ( x )  has the form 

7rX f - ' ( x )  -- 
2 log x 

(5.21) 
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so, in order to use (5.20),  we must integrate both sides with respect to /3 and then set 
p = 1. The leading logarithmic correction ( k  = 0) is a term 1/ N’ log N, and the N’ 
factor cancels the prefactor in (5 .19) .  The coefficient a ,  may be read off from Lyness 
and  Ninham (1966): it is 

a,=  [ ( - l ) h ( O )  = - h ( 0 ) / 1 2  (5.22) 

where [(s) is the Riemann zeta function. Putting this all together, we find, for free 
boundary conditions, 

log A , , , = A o N 2 +  BoN+C,,+.rr/2410g N .  (5.23) 

The convention here is that the geometric factor 424 has been dropped, as with the 
excitation energies .si. The coefficients Ao, Bo, CO, will only be correct for infinitesimal 
U, but the next term is universal. In fact, this might be argued from its very origin as 
a factor which depends only on the nature of the singularity near zero a. The same 
derivation may be repeated for fixed boundary conditions. This time we need the 
asymptotic expansion for the sum 

N - 1 & - I  c . s , = [ 4 N ( N + l ) ] ” ’  f - ’ ( ( j - i ) / N )  
J = 1  J - 1  

= N [ 4 N (  N + 1)]’’2 TC,;’] f - ’ (x)  

with the midpoint trapezoidal quadrature rule. This time we have 

a , =  ( 2 - 1  - l ) [ ( - l ) h ( O )  = h ( 0 ) / 2 4  

giving 

log -Amdx = A ,  N 2  + B ,  N + C,  - ~ / 4 8  log N.  

(5.24) 

(5.25) 

(5.26) 

6. Virasoro characters 

C T M ~  are themselves partition functions of a quadrant of the lattice. According to the 
theory of conformal invariance, partition functions for a large but finite critical system 
may be factored into the product of a non-universal part, which contains the information 
about bulk free energy, etc, and  a universal part which is manifested in the finite-size 
corrections. For CTMS, Peschel and  Truong (1987) have shown that the leading 
finite-size corrections involve log N ;  such behaviour is exactly what we have seen in 
section 4 in our asymptotic analysis. 

First we make some general observations which are independent of the boundary 
conditions. There are 2” eigenvalues of the CTM and  (4 .1)  and (4 .3)  shows that we 
may write them as 

(6 .1)  
where the occupation numbers n, take the values 0 or 1 .  The corresponding eigenstate 
is generated from the maximal eigenstate by application of the creation operators GI 
for each non-zero n,. The parity of the state-in the fermion language-depends on 
whether there are an even or  odd number of excitations. The collection of all eigen- 
values may be represented by the generating functions 

.I = .l,,,A ; ‘A :z . . . A 

I 

X , ( A ~ ,  . . , A V )  = ~~,,, n ( 1  * A J ) .  (6 .2)  
J - 1  
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By this we mean that the 2 N  terms in this product are in one-to-one correspondence 
with the eigenvalues given in (6 .1) .  Moreover, the generating function x- also charac- 
terises the parity of the eigenstates correctly as the sign of the product. If now we 
represent A,,, as a product of non-universal and  universal factors .in, and A. (A- ) :  

1 I m a x  = h n u  A0 ( A  nu 342 ) (6 .3)  

then we know the dependence of A,, ( A + )  on log N from the analysis of section 4, and  
we should discard the non-universal part when considering the theory of conformal 
invariance. 

Now we may construct the generating functions for the universal part of the 
eigenvalues in the limit of large N. First, for free boundary conditions the CTM has 
two identical blocks, labelled by the value of the centre spin. Equations (5.13) and 
(5.23) show that the asymptotic values which we need are 

= ql/24 A, = qJ (6.4)  

where 

q = exp( -.rr/log N ) .  (6 .5)  

Substituting this into (6.3) and dropping the non-universal contribution, we find that 
asymptotically the generator of the eigenvalue spectrum is the Virasoro character: 

I7 (1 + 4’) - 1  48+1/16 xl,lb(q) = q 
J = l  

= q+1’24(1+ q + q ’ + 2 q 3 + 2 q 4 + .  . . ). (6 .6)  

For fixed boundary conditions, there are the two blocks of the CTM for which the 
centre spin is aligned (opposite) to the boundary spins. Expressed in fermion operators, 
these are the even (odd) parity solutions. The generating functions for the spectrum 
in the two cases are 

x + ( A I , A ~ , , . . , A ~ ) * ~ - ( A I , A ~ ,  . . . , A N )  (6.7) 

4 = q“-I >’. (6.8) 

respectively. In either case, the relevant asymptotic values, (5.14) and (5.26) are 

A* f q - ‘  48 

Thus the asymptotic limit of the generators (6.8) are expressed as the linear combina- 
tions 

xo(9) *x1,2(q) (6.9) 

of the two Virasoro characters xu( q) ,  X I , ? (  q) ,  where 

x 

xo(q)=q-1’48 n ( l + q ’ - ” 2 ) +  n (l-qj-1’2) 

= q - ’ “ y l + q 2 + q 3 + 2 q 4 + 2 q 5 + ,  . . )  

( ,Il  , = I  

)) 
x l / l ( q ) = q - l i 4 $ (  fi ( 1 + q ’ - 1 ’ 2 ) - n  ( p q j - I / 2  

* . }. 

I 

/ = I  J - 1  

- - q - ~  /48{q~/:  + q 3 / ? +  q 5 i 2  + q 7 / 2  + 2 q 9 / 2 + .  

(6.10) 

(6.11) 
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7. Conclusion 

There is increasing evidence of a close relation between CTMS and the Virasoro algebra. 
The Virasoro characters ,yA( q )  occur in the spectrum of CTMS in two distinct instances. 
First, for solvable models such as the A - D E  models associated with classical Lie 
algebras, they appear in the exact expressions obtained for the non-critical local state 
probabilities in the thermodynamic limit. In this case the modular parameter q is 
related to the deviation from the critical temperature. Second, the Virasoro characters 
appear in the spectrum of CTMS at criticality. This has been established for the Ising 
model in this paper and is expected to hold more generally for the A-D-E models. In 
this instance the modular parameter q is related to the size of the finite geometry. 
From the point of view of scaling, however, there should be just one scale in the theory 
away from the critical point of the bulk system, given by the correlation length 6. 
Indeed, as pointed out by Saleur and Bauer (1989), both cases are correctly described 
by the single formula 

(7.1) 

where the opening or effective angle 0 is 2~ for a plane. 
For the sake of definiteness, let us consider the L-state ABF models so that L = 3 

is the Ising model. Then in the ordered regime 111 (Andrews et a1 1984) the modular 
parameter of the Virasoro characters is given by 

q = exp( - d / l o g  6) 

q = e x p [ - 4 d / ( L + l ) ~ ]  (7.2) 
where p = exp(-e) is the temperature variable. The effective angle e of a corner is 
related (Barber et a1 1984, Kim and Pearce 1987) to the spectral parameter U of the 
corner by 8 = ( L +  1 ) ~ .  If we use the result 

v = ( L +  1)/4 (7.3) 5 - p - u  

to eliminate E in (7.2) in favour of 6 we see that this modular parameter agrees with 
(7.1). Similarly, returning to the result (6.5), which is valid for a finite system at 
criticality, and using the finite-size scaling hypothesis 

6-  N N large (7.4) 
also gives agreement with (7.1) for the angle e equal to one radian. 
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Appendix 

For the purpose of this paper, in which interest is focused on conformal properties, 
we have only used the structure of the lower lying states of A(u) .  All results needed 
for this purpose have been obtained directly from H using analytic methods. In this 
appendix we provide numerical evidence that using the exponential relation between 
the two does give the correct description for the low-lying states. 
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The matrix &(U) is of dimension 2 N  only, a simplification which allows easy 
numerical calculation to quite large values of N. We have performed calculations for 
both free and  fixed boundary conditions. The relevant formulae for building up &( U )  
are given in section 4. It is evident that the computation of &( U )  for N + 1 sites consists 
mainly of a repetition of the steps necessary for N sites. Since the purpose of the 
calculation is to study the dependence of eigenvalues on N, we wrote a FORTRAN 

program in which N was increased in steps of one, and at each step the eigenvalues 
A , , ( u ,  N )  of &(U) were calculated. Also at each step, the matrix 2, which represents 
the generator, was constructed and its eigenvalues E ,  found. Finally, for fixed U and  
n, the ratio of A,,( U, N)/AmaX exp( -U&,,) was calculated as a function of N. The practical 
limit on these calculations is the (numerical) condition of &(U), as indicated by the 
ratio of the maximum to minimum eigenvalues. Together with the fact that the 
asymptotics involve the logarithm of N this makes it impossible to pursue the calcula- 
tions to very large size for &(U). In all cases our calculations indicate, to the double 
precision employed, that the ratio (4.12) converges slowly to unity. We have done 
similar calculations for fixed boundaries also, with the same result. Results from a 
representative calculation, for free boundary conditions, and with U = 0.05, are shown 
in table 1. 

Table 1. Numerical values of ratio of eigenvalues of do and R0, for the two lowest states, 
with U = 0.05-see (4.121. Alsoshown is the ratioofthe minimum and maximum eigenvalues 
of do (condition number). 

N Ratio A,,,lA,,, Ratio (4.12) for n = 1 Ratio (4.12) for n = 2  

6 
8 

12 
16 
24 
32 
48 
64 
96 

128 

5.429 
11.07 
47.73 

2 12.0 
4381.0 

9.3852E + 04 
4.5661 E + 0 7  
2.3234E+ 10 
5.8839E + 15 
1.8569E+ 16 

1.000 190 262 392 37 
1.000 175 749 614 29 
1.000 159 161 331 94 
1.000 149 450 959 32 
1.000 137 923 859 16 
1.000 130945 042 57 
1.000 122 415 052 30 
1.000 117 106 225 22 
1.000 110 453 009 85 
1.000 IO6 215 066 36 

1.000 677 955 083 08 
1.000 506 657 673 20 
1.000 378 796 066 93 
1.000 322 339 556 51 
1.000 267 402 827 52 
1.000 239 163 699 45 
1.000 208 808 773 50 
1.000 191 899 661 68 
1.000 I72 566 788 91 
1.000 161 217 720 28 

To illustrate further how painfully slow numerical convergence is, we have given 
some further calculations, for R0, table 2 .  The (numerical) condition of Zo, unlike 
that of &( U), does not deteriorate rapidly for large N. We have shown the two lowest 
eigenvalues up  to N = 2048, together with their asymptotic values as given in (5.13) 
and as calculated from the solution of the transcendental equation (5.10) using the 
asymptotic form (5.11). The second method corresponds to the way in which the 
central charge was recovered in section 5. We have also shown the ratio of the lowest 
two eigenvalues, known to have the asymptotic value of 2 .  The slow convergence is 
evident from the numbers. 

As a further cross-check on the coding, we also made direct numerical calculations 
for the CTM A ( u ) .  We calculated the spectra of A ( u )  for a number of values of U and 
for N = 1 , 2 , .  . . , 8  (a maximum of 256 eigenvalues) and compared with the indirect 
calculation using &(U), followed by the inversion identity (4.11) to obtain Aman.  In 
all cases there was complete agreement (to the double precision employed). 
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Table 2. Numerical values for lowest eigenvalues of X o  

Ratio of E ,  to value Ratio of E ,  to solution 
N given by (5.13) of (5.10) and (5.11) Ratio of E ,  to c2 

16 
24 
32 
48 
64 
96 

128 
192 
256 
384 
512 
768 

1024 
1536 
2048 

0.498 320 485 829 
0.527 146 259 445 
0.545 559 595 235 
0.569 101 319 323 
0.584 325 230 480 
0.603 991 155 770 
0.616 825 807 531 
0.633 538 133 611 
0.644 524 516 277 
0.658 922 676 208 
0.668 444 158 683 
0.680 989 546 751 
0.689 327 258 801 
0.700 362 965 362 
0.707 728 637 036 

0.797 642 292 638 
0.824 832 990 476 
0.840 935 043 215 
0.860 090 116 066 
0.871 648 891 959 
0.885 670 140 023 
0.894 301 092 799 
0.904 970 236 915 
0.911 657 375 587 
0.920 059 121 055 
0.925 404 484 992 
0.932 208 919 175 
0.936 589 440 295 
0.942 222 833 827 
0.945 882 702 579 

2.289 458 819 602 
2.248 035 227 752 
2.224 201 202 420 
2.196267 104041 
2.179 555 982 510 
2.159 389 906 076 
2.147 032 687 113 
2.131 834 529 442 
2.122 369 271 208 
2.110 571 338 427 
2.103 137 029 109 
2.093 777 687 924 
2.087 826 986 937 
2.080 276 708 844 
2.075 441 839 771 
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